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ABSTRACT

o

.- S~

In a previous paper [1], the steady-state behavior of a finite queue
which accepts batch poisson inputs and received service from servers operating

in synchronous mode was studied. An analysis was successfully completed via
o
the application of the Residue theorem in complex variables. This work

¢

- I

extends the study in [1}~tb include the effect of routing and buffer sharing.
Upon the arrival of a batch each customer determines its route independently

according to certain probability distribution. Buffer sharing with minimum

;",‘ \7/‘\"- g -

allocation studied in £5T is also considered. Results obtained include state
probability, blocking probability, delay, and throughput. Validity of

analysis has been verified by computer simulations.
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1. INTRODUCTION

In a previous paper [1] Chang and Chang study the steady state behavior
of a queueing system under the following conditions.

1) Customers arrive at the queue in batches according to a Poisson
process with mean rate A batches/sec.

2) Each batch carries a random number of customers. The size of each
batch is a positive integer=valued random variable which may follow otherwise
any arbitrary probability distribution.

3) The system provides a capacity of accomodating N customers.

4) Customers receive services from m servers in the manner of
firstAcome~first=served. Each customer requires a constant service time of T
seconds. The servers operate synchronously in the sense that m customers can
be removed form the system constantly every T seconds.

5) Upon the arrival of a batch if the remaining space is not enough to
accept every customer in the batch then the entire batch will be completely
rejected.

The system described above is an approximate model of a packet switch in
a computer communication network. Although the problem is combinatorially
very complex, it has been successfully solved via the application of the
Residue theorem in complex variables. In a separate paper [2], an alternative
approach called minislot approximation was introduced to solve the problem.

In a practjical system such as computer communication network mentioned
above, a packet switch may have several output channels and packets may have
their own preferences in selecting an output channel. In order to make the
model more practical and the results more valuable, part of the purpose of

this study is to extend the work in [1] to include the effect of routing. 1In
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other words, in addition to the above assumptions, should a batch be
acceptable each customer of the batch decides from which server to receive
service independently of the other customers acording to a specific
probability distribution. We shall use rj to denote the probability that a
customer will be routed to server i. Clearly, 0 {rj < 1 and ry + ... +
rm = 1. This type of routing is usually referred to as random routing in the
area of computer communications.

The purpose of buffer sharing among customers routed to different
outputchannels is to achjeve efficient utilization of buffer, Several papers

[3] = [5] have discussed this problem. It is pointed out in [5] that sharing

with minimum allocation (SMA) performs better than complete sharing (CS) when
traffic is high. 1In CS the entire buffer is accesible by all customers. In
SMA each user has a reserved area which can be accessed only by customers
routed to that server. In addition to the reserved region there is still a
shared region. This work also tries to examine the effect of SMA on the
behavior of a finite queue. For convenience we study the problem in which
each server only has a reserved space capable of holding only one customer.
Fig. 1 depicts the conceptual model of such a system. We believe the results

can be modified to the situation where servers can have reserved areas of

different sizes.

The approach using the Residue theorem proposed in [1] will again be used

:3 to obtain results such as state probability, blocking probability, average

Ei delay, and system throughput. However this approach has to be modified. The
?g modification is necessitated by routing consideration. For example the

%E derivation of state transition probabjility via the Residue theorem not only
EE depends on the remaining buffer space but also on the set of busy and idle

servers. This will be demonstrated in Section 2.
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Section 3 of this report discusses the extension of this work to unequal*
rate servers. Conclusions are made in Section 4. -
Throughout this work ergodicity of the process is assumed so that

essemble=averages can be replaced by time»averages.
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2, MAIN RESULTS

Let wy denote the probability that the system is at state b = (by, ...,
bp) at the beginning of a time slot. In b = (by, ..., by) such that b = by +
.. *+ by, bj(>0) represents the number of customers which are to be routed to
server i while b denotes the total number of customers in the system. Let x =
(X1, <o xm) such that each xj is nonnegative integer and x; + ... + x5 > 0
be an arriving batch of size xy + ... + Xxp in which x; of them are to be
routed to server i, Suppose N = 10, m =2, and - = (1,2). Also suppose
three arrivals (3,1), (2,6), (1,1) (according to their order of appearance)
have occurred within a slot. The first arrival (3,1) is acceptable and will
lead the system state from (1,2) to (¥4,3). The second arrival (2,6) must be
rejected since 2 + 6 + 4 + 3 = 15 > 10. The last arrival (1,1) is acceptable
since 1 + 1 + 4 + 3 =9 > 10, In other words if b = (1,2), the arrivals
(3,1, (2,6), (1,1) all together result in four and two customers effectively
accepted by the system and to be routed to server 1 and 2, respectively. We
use a = (4,2) = (3,1) + (1,1) to illustrate such an event and use pg,p to
denote the corresponding conditional probability. In general, a = (ay, «v0
ap) in which each aj is a nonnegative integer such that a = aj +...+ ap > 0.

Let n = (ny, ... , ny) denote the system state at the beginning of the

next slot. Then the steady=state behavior of the system is characterized by

(1) T = ) TpPash
n (a, b) €AB(n)

where

(2) AB(%) = {(a, ) {0 < (b, » D" <y,
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In (2),

b if x>0
(3) (x)* =
0] if x < 0
Physically, AB(n) represents the set of (a, b) such that the system can

transit from b to n via the acceptance of a. 1In (2), (bjy = 1)* represents

the number of customers (among the initial bj) remain in the system at the

3

end of the slot. 2: (bi - 1)* must not be greater than N“m since at most m
i=1

m
customers can be removed from the system per slot. 2: (bi = 1)*=N&=mn
i=1

occurs when b = N, i.e. system is full, at the beginning of a slot and all
servers are busy during the slot. (aj + by @ 1)* represents the number of
customers which stay in the shared region and to be routed to server i. For

example if bj = 0 and a; = 1, then this customer will be placed in the

reserved area and there is no customer waiting for server i in the shared area.
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Since the shared area is of size N*m, we have 2: (ai + bi =t SN -m
i=1

in (2).

m, in (1) must be solved together with

o

o
m
9]
[0 ¢]

where

¢N=(me1), 1<¢i<m0<bgN}

(5) BB={E Osbip. o - -

Physically, BB denotes the set of feasible states. In (5), N & (m ~ 1)
represents that the system can have at most N = {(m -~ 1) customers to be
routed to server i, 1 <1 < m,

In order to solve (1), we need to find p,, p first. Let x; be a sequence
of batch arrivals arranged in the order of their appearances in which xj =
(Xi1,%X§2++..,Xjy). We have explained previously that x;j represents the
number of customers in the ith batch of {xi} which select server j to receive
their services. Next we use B and I to denote the set of busy and idle
servers, respectively within a slot. A customer which arrives within a slot
must wait till the beginnning of the next slot to receive service even if the
server it selects is idle when it arrives. This is because the servers are
running synchronously at the same speed. The duration between the arrival of
a customer and the beginning of the next slot will be called residual period

of this customer. Let R denote the size of the remaining free buffer




TNy,

including both the shared and reserved region at the beginning of time slot.

Let | B] and| I| respectively denote the number of busy and idle servers.
Clearly, R>|I| and R - | I | represents the size of free buffer in the
shared area.

The approach using the residue theorem proposed in [1] can be used to
obtain pz, p. However it has to be modified.

Example 1. Suppose R =5, m =3, B = {2}, and I = {1, 3}. This means
the shared region can take no more than 3 customers. Thus in {Xi} =
{(4,3,00, (0,3,1), (1,4,2), (5,1,2), (0,0,1), (0,3,0)} only (0,3,1) is
acceptable and the rest are rejected. The arrival (0,0,1) is rejected since
after the acceptance of (0,3,1) not only the shared region becomes full but
also the buffer reserved for server 3 is occupied. Thus the only customer in
(0,0,1) which can only be placed in the shared region gets rejected. {(0,3,1)}

{2}, and 1 = {1, 3}. {(0,3,1)}

is called an acceptable pattern when R = 5, B

further divides {x;| into two subsequences Co, = {(4, 3, 0)} and ¢y = {(1, ¥4, 2),

(5,1,3), (0,0,1), (0,3,0)}. Cq and Cy will be called blocked subsequences of
{51}-
In general, we use {a1, ceey an} to denote a general acceptable pattern

a

such that = (a a ooy akm) and a, = a + ... +a . Let 5 and ug

Kk k1, k2, k kl km

respectively denote the number of unoccupied reserved buffers and the number

of unoccupied shared buffers before the acceptance of aj.q, i =0, 1,A..., n~1,
For i = n, uy and v, are defined similarly except after the acceptance of aj.
Use R; to denote the size of the remaining free shared and reserved buffers
between the acceptances of aj and aj.q. Then any arrival pattern {li} which

contains ats ., an as a subset may have the following blocked subsequences
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;: Cor» C1» «vy» Cp such that cjj € Ci, Cjj = (cij1 oo cijm) with Cjj = Cijt1 *
E: «vs * Cjjp Satisfies

»

(6.a) Coj > Rop = R or the number of unoccupled reserved buffers selected
by customers specified in coj is less than cpj = v for vo + 1 < cpjy <

Ug * Vo = Rg

i
(6.b) cij > RJ =R= J a, or the number of unoccupied reserved buffers
K=1

selected by customers specified in Cij is less than Cij “ vy for vi + 1< Ci j
SejySug v vy =Ry, 1=, oo, .

Define for i = 1, ..., n and after the acceptance of aj

(7 By = {j| server j for which the reserved buffer is occupied by some
customer |
(8) I = {j| server j idle and its reserved buffer is still empty}

Clearly, By UIj = {1, 2, ..., m}, uj =] Iy|, and v{ =|B;j| . Next, let By =

B and I, = I where B and I have been defined previously to be the number of
busy and idle servers, respectively, at the beginning of a slot. Also define
qj (x, Rj, Bj, Ij) to be the probability that an arriving batch of size x is
rejected because the number of servers in I; selected by customers in the

batch is j which is less than x = vy. For example

(9) q.(x, R,, B, I.) = ( re ), x2v, +1
i i i i veB; 2 i
while
(10) a,(x, Ry, By, 1)) = [CY vy 5= r)*l
kel %eB; {k} %€ By
-9-
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- 2: e ' )< - q, (x, Ri» Bys (kh1, x 2 v, +2

kel; %ebd; [kl !

In general,

(11) ay (x, Ry, By, 1)) = )> D) )X

(k0 Ty kj) eKK, & € BU{k1. cees kj}

e
& t q, (x, Ri' Bi' {k1, cee kj})]’ X 2 vy + 3 +1

where

. i
(12) KK, {k1, . kj) each Kk,

; € I; and Kyy ooy Ky distinct}

Eq. (11) above can be easily encoded into computer program., Our expreiences
show the enumeration of qj(x. Ri» By, Ij) does not require too much computer
time.

Let Bj denote the probability that an arriving batch is rejected between
the acceptance of 3y and ay4¢ for i =1, 2, ..., n~1. B4 and Bnh resepctively
denote the above probability before the acceptance of a; and after the

acceptance of a,. Then from (6.a) and (6.b)

X - v -1
o}

R
o]
(13 B, =8 * z: gl 2: gj( Xy Rys By IO)]

X = Vg + 1 j=0




where g, denotes the probability that a batch contains a total of x customers

-::: and
ft 5
P (14 Bx "By + 1 "Bt -k
.l represents the probability that a batch ¢ ntains more than x customers.
e Next
- R1 X h}fj =1
(15) B, =8, * g C
TRy xS e x o0 9 (o Ry By 1))
In general o
w R, X B v, - 1
(16) By =8 * Y gl X ay (X, Ry, By, I))]

1T x"=vy+1 X J=0

Let N be the random variable representing the number of batches arrive

in a slot and let AP stand for acceptance pattern then

(7 P(aP = {ay, a2, ..., gn]{ Ny = k]

n a L = m a, . J J1 Jjn

Tlg, ¢ ) .. (M 1 nep ¥ P B ek
- i=1 1 311 aim 1=1 Jj=1 jo*~°°+J = kan
> 0, if k <0
;
e
E where ay + ... + ap < R. Via the approach using the Residue theorem [1] we
E_ obtain
|
F_'-', (18) PLAP = {ay, az, ... , ap}| Na = k]
-
i“
. -11-
.
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1 zk
= CAP =— dz
2ni 21 = ¢ R (z~8)
Jj=0 J
where ¢ > B5, 8¢, ... By and
n a1 ai a4 aij m ai.
(19) cAP = 1 [g, (, ) ...( ) o (r) I
i=1 i il a Jj=1

(throughout this report the i assoicated with 2vi denote ,=1, otherwise it can
be used as a subscript or superscript.) Finally,

(20) PLAP

{ar, ags oo anhd

> plAP = {aq, ..., ap} INa = k] fy
k=0

_ _Cap F(z) dz
2ni lz| = i

30 (2 - ej)

where . = P[N; = k] and F(z) = f, + f1z + £522 + ... is the probability
generating function of fy. The derivation of (20) is similar to that in [1]
where routing is not considered.

Define

(21) ¥a = ¥ (ajap ... ap)

= { 4P = {e1, ..y enllep = Cegry egrh oot eyp)s
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We use | ¥5 | to denote the number of APs contained in ¥,. Similar to [1], ¥ l
\
! can be obtained recursively as follows. If AP = [31, cve s En} then define

f; (22) AP * epnyq = {31, ceer €y Sn*l} \

Let ¥ = { AP1. e » APZ} where % is an arbitrary positive integer and e an

arbitrary acceptable batch, then define

(23) v*xg={AP, *g, ..., aP, * g}

The definitions of (22) and (23) are taken directly from [1].

- -13-
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Example 2 Suppose m = 2

()

Y10y = L0}
Y01y = {00}

-

g ¥, 0 = H0h, {0, (1,00

pos = {¥.0) * 201 {y 4y * (L0}

8 ¥y = oot {a,e, 0,0}, {0, (o

= {¥o,0) ¥ (D] ¥y ) ¥ (D} Hrg qy * L0V
v, 1y = H@nt {{,o, o0}, (0,0, 0,0, (0,0}

.‘37;5 {{a,n, a0}, {0,0, 0,0, (1,0}, {(0,1), (1,00, (1,0)}}

{{to,1), (2,00 }}  [{ar,»y, 1,0}

\ = l¥g,0) ¥ (20U ¥, o) x @b U fry 4y * CLO]

"

x U {“'(0,1) * (2,00} v ["(1,0) * (1,1}

1.: In general, we have

o

o u

o (2%) wg B ~y(a1, , a)

. P B AT .. P R . > I
P S TR W T T P A A L A R



Now let us find P [¥,].

Example 3. Let m = 2. From our previous discussion of (13), (15) « (16)

-
i‘ we have

. _ 1 F(z)
- (26) P["'(0.0)] T /(z = Boo) dz

R fAOO (z) F (z) 02
omi Boo(z)

where Agg (z) =1, Bgg (2) = z - Bgg, and Bgp can be obtained from (13)
assuming Rg, Bg and I, are known.

If (ay, ap) = (1,0) we have

: J{ g, r, F(z)
(27 Ply ] = = - dz
(1,0) 2ni (z BOO) (z BIO)
R .}' Ajg (2) F (z) .
oni 810 (z)
-15- 1
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where Ay1g (2) = gyrqy, Big (z) = (z = Bgg) (z = B1g). In (27), Bgp and Byg can
be obtained from (13) and (15) under the assumption that Rg, By, Ig are known

and [(1.0)} is only acceptable pattern.

Similarly if (ay, ap) = (0,1) we have

1 A01 (z) F (z)
(28) PLYo, 1)) = 21 Byy (2) dz

where Ag1(z) = giry, Bgy (2) = (z = Bgg)(z = B8g1). In (28), Bpg and Bpy can
be obtained from (13) and (15) assuming Rg, Bg, Ig are known and {(0,1)} is
the only acceptable pattern. If (aq, ap) = (2,0), since ¥ (2,0) = {{(2,0)}} U

{W(1,0)* (1,0)} we have

(29) PLY (, o)) = PLAP = {(2,0)}1 +pPLAP = {(1,0), (1,00 ]]
1 A20 (z) F(z2)
EmI o 4
520(2)
where
B,. (2) g.r. A, (z) B (z)
85 (2) = 82”12Aoo<2) BOO(E? (z - 8,5) ; : (1? (= = )
10 ‘2) (27 By
i 2 : . k1r “2 M1 " ¥ _Ramig,0 P20 (z)
Ky ky)e ¢(2,0)k1 vk, 102 1 82_k1,0 (z) (z = B )
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B 0 (z) = (z

Suppose Rg, Bp, and Ig

In general, for m

must have distinct values}.

R R e e T T T

(z & 810) (z = 820)

=N
=20

(z » 8 .)
0 1

are given, Bg can be obtained either from 81 of (15)

by assuming AP = {(2,0}} or from B> of (16) assuming AP = {(1,00, (1,00 }.

2, we have

, a, (z) F (2)

Aa
1 1 2
Zﬂif Ba a
1' 72

(30) P[v(a1' aZ)J - 3) dz
where
¢ K
(31)  Aay, a, 5(z) = :E: [ gk; + ko I r 1 ry 2 Rla sk . a-k )(z)
! (a, a) k 1T 71 T2 2
12 1
B (z)
] (a1, a2)
B - R (z) (z - 8 )
(a1 k1, a, k2) a,a,
; (z‘Bkl' k2)
(32) B (z) =
(a1. a2) Bk1’ s € BTA (a1. a2)
. I
In (32), BTA (a,, a,) {Bk1, Ky 0 gk, $a,, 0<k, ga,, andall Bk1, ko

In other words, there could be several

combinations of k4 and kp so that their values of 8 are identi~al. 1In this
-17-
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case, we select only one of them as representative. This can be explained as
follows.

In the process of combining all the related rationals to reach R
L ]
(z), it could happen that (k1, k2) = (k,, kz) but

In this case we only let the factor (z = Bk
1' "2 1 T2 1’ 72

) appear

once in Ba a (z). Thus, BTA (a1, a2) used in (32) and defined in the line
1* T2

following (32) is for this purpose. Notice that °(a a) has been defined in
1' 72
(25). 1In practice, the value of B which appears in B (z) can be
K,, k a,, a
1 2 1 2
obtained from 81 of (15) by assuming RO, BO, IO are given and AP = {(k1, kz)}.
Finally.
(33) p

ac 9 = P(a1' 32). 2

=P (v
(a,, a2)| Ry = N®*b, By =8, I, =1I]

Throughout this example, all the integrals are assumed to be carrried out

along a circle whose radius is bigger than any of the poles.
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(34) PH’a] = P[?(a1' e am)]

E : K, *«..* Kk Ko *+00o* K k
1 1 m 2 m m
= mf ’ gk +.o..+ ko ( ) ( )...(k )

L P A - km(z) F (z) .
B (z % 8 z

- s
a, k1, ETREE km(z) aa, ...am)
3 1 /%1, cery 2 (2)F(2)
. = - dz
| 2ni Ba1. R (z)

where K = (ky, ... , kp) and

(35) A, RGN DU S
RERR o m K K
f . K E\Pa 1 2

(z ~ B )
(36) B (z) = T Ko oeen Kp
17 °°° “n B e BTA (a1. e am)

4
.

TR
x
x

.
“

In (36),

[N

TRy
. A‘ 8 "
3

o]
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(37) BTA (3y, ..., ay) = {8k1. sk 08k Ly [ K

and all Bk

must have distinct values|

Also, Bk K can be obtained from (15) by assuming RO’ BO‘ IO are known
REEEETIL S
and AP = {(k,, ..., k)}, i.e.,
N Ry X 8 v1 -1
(38) iy e T B 2 gl ?__2 a0 Ry B 1)

where

m
(39a) R, =Ry~ Dk

(39p) B, = {BO u 1. ulky), 2+ ulky), wooy m o u(km)} u {o}} - {o}
(39¢) I1 = I0 s {1 . u(k1). 2 »ulky)y, cosy m o u(km)}
(39d) vy = R, h‘ IJ

In (39), u(x) denotes the unit-step function, i.e.,

o e . e h et et R L LR Y

LT N T I U g ~ 3 e e s AR
W GRS PSR WO W S R ET GIE wD R A I ST U WL W PR L P URPUAY 0l W I T NP S Uy W PN ST S S Wil U Y
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(40) u(x) =

0 if x <0

Notice that {0} and - {0} in By is to prevent from including O and By since
servers are numbered from 1 to m.

Finally, pg, p can be evaluated as follows
(41) parh = P[¥a| By =B, Ig =1, Rg = N - b]
This is because at the beginning of a slot, the initial state b is completely
specified by the set of busy servers B, the set of idle servers I, and the
size of the remaining free buffer space N=b. To evaluate the probability that
a is accepted is equivalent to evaluate ¥, based on B, I and N®*b. Once paz,p
is obtalned, (1) can be solved. The finiteness of the queue guarantees the
existence of the probabilities m, regardless of the value of \. The

minislot approximation porposed in [2] can also be used to obtain Pash-

Now let nﬁ denote the probability that the system is at state n at t

seconds after the beginning of a slot. clearly = satisfies

(42) m

=S

- t
b Pa

)
(a, ®) ¢ ABT(n

)

subject to

(3) 2 e

n e BB

B where ABT(n) = {(3, g)| by < ny and a3 = ny = bj} and BB has been defined in

-21-
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(5). Also in (42) p is the probability g has been accepted into the

(o

.

system if at the beginning of the slot the system state was b. Let O denote

the beginning of a slot and define

T
* 1 t
4 = -
(44) L T f ng dt

Then

* %
(us5) L Z ﬂp pé'
(a, b) € ABT(n)

b

subject to

(46) nﬂ = 1
ne BB
In (45)
T
* 1 T

dz dt

N
=
—
~3j—

T F@
Bé(z)
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A_(2)
1 1 a t
=m T/B(Z) F'(z)dt dz
a
- 0
T
o 1 Aa(Z) e“xt(1—z) dt  dz
2ni T B_(z)
a
= 0
&
A (z) (T3 L gy
Apy eers B
] 1 dz
ST 2wl B (z) (z=1) B _ _
Ay cees am RO-R, BO-B, IO—I
The derivation of (47) is similiar to the derivation of pg,p.

We use Bg to denote the probability that a batch arrives at t (Q0,T) is
rejected. Also we use Bp to denote the average blocking probability of a
batch. Clearly,

T
1 t
(148) Bb =7 f Bb de
0
. R(n) xev(n)e
- Z C (x, R(n), B(n), I(n))]
TTn SN_n + Z Sx & qJ s ’ [
n ¢ BB x=v(n)+1 J
where
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(49a) B(n) = {{ 1 «uln), 2 «ulny), ..., m « u(ngy)} v {o}} = {o}
(49p) 1(n) = {1, ..., m} = B(n)

(49¢) R(n) = N=b

(49d) v(n) = R(n) - | I(n) |

Define a test customer to be a randomly selected customer. Clearly, the

probability that this test customer is drawn from a batch of size x is xgy/

(g1 + 232 + ... ). Let BZ be the blocking probability of a test customer t

seconds after the beginning of a slot and

then

® R{n)

N
1 *
(50) B, = 3 iio ™ { E: Xg_ + % xg,

x=N~n+1 X X=v{n)+1

Pl e e

.i{ x=v(n)=1
e ( 28 q,(x, R(n), B(n), I(n)]}
i’ j= ’
gii‘ where

T

o

=

L .

- [

’E:':.j (51) a= Y xg,

o x=1

represents the average batch size.

Let Lq denote the average number of customers waiting in the system, then
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*
(52) D D (jf;awb-n*)p 11
T pers acmmi™ I &k " b

where AA(D) denotes the set of feasible a if the system was initially at b and

\
\
can be expressed as follows 4

N
~~
[V
+
o
v
Z
+
[N
=
1
3

(53) AA(9)={§|05a5N~b,O._

3

The reason that 2: (a

+ bj = 1)* < N - m has been given in the explanation
J=1

J

of (2). Next let Lqrk denote the average queue length associated with server

k, then

(54) L

*
Z (ak + (bk:-w)*) Pa,b]HE

Q. b‘c BB [ A & AA(K)

We use lg,x to denote the effective input rate, expressed in number of

customers per sec, to server k, then

* N=n
(55) o = A 2 1 (> g, AR(p, i, K]

where AR(Q, i, k) denotes the average number of customers accepted by server k
if the batch contains i customers and the system is at state n when the batch
arrives. 1In (55), i ranges form 1 to N -~ n since it is necessary for a abatch

not to contain more than N = n+ 1 if that batch is to be accepted. AR(n, i,

R R . . . . EEN -
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k) can be accepted as follows. First we define an indicator variable IV(k) as

follows to indicate whether k is in I(n) of (49.b)

1, 1if kéI(n)
(56) IV(k) =

o, elsewhere

Using the notations defined in (49) we obtain

i
Y j(Ji.) rkj (1 = rk)i I, i1 5 v® + v)
i

v(n) + IV(k)
(57) AR(n, i, k) = ) ih r.kJ [(1 _,.k)i*J N
3=1 ;

i=v(n) o 1= IV(k) n n "
[a (i-3, R(D), B(3), 1M1}
x=0

, if v(g) + IV(k) < 1 < v(n) +

I(n) ‘

This can be explained as follows. When i < v(n) + IV(k) then the batch will

definitely be accepted. Therefore in this case the average number of

i -
customers accepted is simply j(;) rJ (1t =r )1 J. However when
j=1 K K

v(n) + IV(k) < 1 < v(n) +| I(n) | then the batch of size I could be rejected
due to improper routing. The term J qQx(i#j, R(n), B(n), I(n)) accounts for
this effect and must be subtracted.

Once Lq, and Ag,, are obtained, the average waiting time of an accepted

customer routed to server kK, Wa,k, can be obtained from Little's formula as

follrws.

-26-




L,k

Ae,k

(58) wc.k =

This holds at steady state.

Then the average delay of an accepted customer routed to server k is

(59) D = W + T

Let D, denote the average delay of a customer, then

m
(60) D, = k; Do Tk

Although the derivation of D, is done through (58) via Little's formula,
the average batch delay Dp has to be obtained in a different manner, This is
of course due to the variation in batch size. But more importantly, customers
in the same batch can be routed to different servers. This complicates the

derivation of Dy.

Let Db % denote the average daly of a batch of size &. Then
(61) D = 3 (a, +# (b, #*1) 1 +0.5]r

o, 1 (a,b)eABbab KK, K, 1
where

+ <
(62) AB1 ) [(a, b)| O-a+b-=N-=-1, 2: (a +b, = 1) - N - m}
J=1 ]
-27-
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In (61), the 1 corresponds to 1 slot of service time while the 0.5 represents

the average residual period. The residual period of a customer is measured
from the instant of its arrival till the beginnning of the next slot. Since
arrival could occur anywhere within a slot, the average residual period turns
out to be 0.5 slots. The KKy in (61) denotes the set of serves which
guarantees the acceptance of the batch of size 1., Obviously, if there is at
least one empty buffer in the shared region then KK; = {1, 2y ey m}. If the
shared buffer is already full, then KKy is simple the set of servers for which

their reserved buffers are empty. For Dp,, we have

+
k. = 1) +d + 0.5,
1,2 71 1 1

2

(63) Dy 5 = Z wbp; b { Z max[ak + (b
' (a,b) € AE ==

(X,, kz)*KK

1

a +( =~1"+d +0.5r r |
2 Ko ko Ky K

where d; denotes the number of customers in the batch of size 2 which select

server i and

(64) AB, = {(a, b)l 0iasn iy 2, ¥ (aj + bj et Sy m}
=1

2 .
J
(65) KK2 = {(k1, kz) servers k1 and k2 are chosen by the batch and
m
Z (@, +b, +d, = N"<N=m }

In general, we have




48 8 -

*
(66) Dy 4 = Z “Q pa,b { Z max [a, + (b, = N*+d + 0.5,

) K K K
(a,b) € 4B, (Kys veey ke KKo 1 1 1
cee,a +(b ~N*+ed +«0.5]r ...r |}
Ky Ky Ky Ky Ky
."'_: where
[l.-
F n
g - - + -~
3 (67) AB, = {(a, ®) ,0¢a+bCN=y, ;é; (aj + b, = D* &N m}
and,
(68) KKQ = {(k1, e kl) servers k1, ’k!. are chosen by the batch and

m
- +
123:1 (ai+bi+di 1)§N~*m}

Finally, the average batch delay is given by

N
(69) D, = Z g,D
b 1 Bb P 270,48

Concerning delay analysis, most papers in the literature concentrate on
customer delay, mainly for simplicity. For customer delay, relation between
delay and throughput or input rate can be established usually through Little's
formula. However, no such relation is guaranteed for batch or group delay.
The reasons for the problem studied in this report are variation in batch size

and routing effect. Similar phenomenon is also noticed by Whitt [6] and

Halfin (73].
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The system throughput S is given by

OO oL pe po i i
. 1‘/:‘
' v

m
(70) s = 9, 2 ulb) m
b ¢ BB k=1 -

where BB is defined in (5).

We have carried out extensive numerical calculations based on the
results obtained here. Fig. 2%5 are part of them. In these examples we
assume m = 3, N = 8 and ry = rp = r3 = 1/3. Two batches size distributions
are consjidered in each of these examples. One is the well known geometric
distribution with p = 0.5 or a = 2. The other is specified by gy = gg =
0.267, g2 = 87 = 0.133, g3 = gg = 0.067, and gy = g5 = 0.033. Since the
latter has a shape looks like a suspension bridge this distribution will be

referred as SB for convenience.

In each figure, the curve labeled by G corresponds to geometric

distribufion while the one labeled by SB corresponds to the suspension bridge

distribution mentioned above. 1In addition to numerical calculations we also

carry out simulations to support our analysis . We observe in these figures

that the agreement between analysis and simulation is extrememly good.

.'- Fig. 2 shows By vs . First, we observe that in both G and SB, By is an
increasing function of A. This 1is intuitively reasonable. As a matter of

331 fact, By approaches 1.0 as A approaches infinity. The rate of convergence

3.ﬁ depends on the actual distribution of the size. Second, we observe that SB
distribution exhibits higher blocking probability than G. This is explainable.
Since the size of a batch in SB is restricted to occur in the range between
one and eight gy = gg = 0.267 i3 considerably higher than the rest. On the i

contrary, for geometric distribuion with p = 0.5, g1 = 0.5 and the i
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distribution is strictly decreasing in batch size. This then implies SB had
higher blocking probability. Third the gap between G and SB closes up as i
increases. This is reasonable since as A becomes big enough the system
occupancy is high and most of the arrivals will be rejected regardless of
their actual size distribution.

Fig. 3 and 4 show Do and Dy, respectively, versus iA. For G distribution
we observe both D, and Dy increase as A increases. This is reasonable.
However, for SB, D, and Dy first decreases then increases as A increases from
zero. This can be explajined as follows. As ) is low, almost every arrival
can be accepted. Since the batch of size 8 has a good chance of entering the
system when A is small, the overall delay is high. When X gradually
increases, only short batches can enter the system thus the average delay of
the accepted batches drops. As A is high enough, system is full almost all
the time thus the delay again is high. Notice that the disagreement between
analysis and simulation is less than 5%.

Fig. 5 shows system throughput versus A. Here we observe G has higher

throughput. This phenonmenon is consistent with Fig.2.

P

Lo Bog ta b anl s Sl Sal sl ondl Safe Sl el we il el S b Gal) tel AR TR TR Ta " e LR e T o

. g L
R T T ST

- - - - . - . - - - . - o R .~ « .
PR PP WO . R S WU T DR W Ve DN G 0 WA W W | PO N G, § Sl Wh g el




r-v-,v,w_,

e
4

~

.« e

DR

- . - . B . . . . . . - - . . . -
MV IS, AT B W P PV AP UAP UL T W IPUR. U AP W ot AP W

ANV R AR TR N AR TR AT T A AT T LT AR e T A T SR TN ST TN TR YRR YT TR TR T TR R RTE YT wew YRy s TN

3. Extensions to Unequal Rate Sservers

Although routing has been considered in Section 2, the servers there are
still assumed to be operating at the same speed. In practice, servers
attached to the queue may run at different speeds. In order to move one step
forward in the modeling of a packet switch, the purpose of this section is to
extend the results to include servers possible running at different rates.

In this section we assume when a customer is routed to server k it will
take the server (or transmitter) A¢ seconds to complete its service for this
customer. Due to the synchronous nature of servers, the behavior of the Qqueue
can be described on the basis of t*second slots where T is the greatest common
divisor of Ay , ... , 8p. In addition to the random routing considered above
we also consider another type of routing called idle*server=first (ISF)
routing which is believed to offer better performance. In ISF routing, idle
servers or servers with no customer waiting will be considered first upon the
arrival of a packet. For both types of routing we have established
state~transition equations, obtained state transition probabilities, and
derived results such as blocking probabilities, delays, and throughputs, etc.
Based on these results we have also carried out extensive numerical
calculations. The validity of analysis has also been verified by computer

simulations. Figures. 6-9 show part of the numerical results.
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4. Conclusions

We have in this work studied the effect of routing and buffer sharing
with minumum allocation on the behavior of a finite queue which receiveS batch
Poisson inputs and provides multiple servers running synchronously at the same
speed. The main contribution of this work is to obtain analytical results for
system state probability, blocking , delay and throughput. The validity of

analysis is not only verified by simulation but also supported by intuitive

reasonings. The work reported here is an extension of [1].

We have also extended the model to include unequal rate servers.
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